

Schedule for Oral Presentations

Oral presentations were organized into five sessions, according to the theme selected by the submitter author. In the program, for each session, a 90-minute time slot is reserved, and oral presentations will be conducted in parallel and distributed in three rooms.

The ISNH 2023 sessions are:

Session 1 – Ecological Nutrition of Herbivores

Session 2 – Optimal Nourishing of Herbivores

Session 3 – Ecosystem Services and Nutrition: a. Provision; b. Regulating; c. Cultural and Supporting

Session 4: Applied nutrition and herbivory in the age of big data and technology

Session 5: The role of the herbivore in future food systems

Check the overview of the parallel oral session time slots:

Time	Room	Monday, 5 June	Tuesday, 6 June	Wednesday, 8 June
	Ι	Session 1	Session 3	Session 4
		5 Oral presentations	5 Oral presentations	5 Oral presentations
Morning	II	Session 1	Session 3	Session 4
Morning		5 Oral presentations	5 Oral presentations	5 Oral presentations
	III	Session 1	Session 3	Session 4
		5 Oral presentations	5 Oral presentations	5 Oral presentations
	Ι	Session 2	_	Session 5
		5 Oral presentations	-	4 Oral presentations
Afternoon	II	Session 2	_	Session 5
Alternoon		5 Oral presentations		4 Oral presentations
	III	Session 2	_	Session 5
		5 Oral presentations		4 Oral presentations

Important Notes:

The exact time and room for the oral presentations will be available to presenters by May 20 or earlier.

But this general schedule can help presenters prepare and already provides the numbering of the presentations (code) in the Symposium's proceedings.

Some oral presentations were set in a session different from the selected theme. It is the case for some oral presentations on the themes: Optimal Nourishing of Herbivores and Other themes related to the nutrition of herbivores.

Session 1 – Ecological Nutrition of Herbivores

The following oral presentations are scheduled for the **morning of June 5, 2023**.

ID*	CODE	PRESENTING	TITLE
30	04	A. Vigh	Supplementing ruminants with low-dose of organic trace-minerals reduces mineral excretion without compromising the physiological mineral status
35	05	F. Dupuy	Understanding spatial-temporal grazing management: evolution of state variables and productive results at cow-calf grassland system
39	06	S. Lashkari	Milk fatty acid composition of cows fed forb-rich silage: results from three Danish organic farms
40	07	T. Van den Bossche	Effect of supplementing α -amylase enzymes or essential oil components on the performance, nitrogen balance and enteric emissions of dairy cows
57	08	J.L. Zegarra Paredes	Ruminal degradability " <i>in situ</i> " of the larvae and pupae black soldier fly meal (<i>Hermetia illucens</i>) in dairy cattle
59	09	G.E. Nouel-Borges	<i>Acacia macracantha</i> pods and leaves evaluation at different levels of inclusion in rations for rabbit
61	010	L.S. Takahashi	<i>Tithonia diversifolia</i> as unconventional roughage source for ruminant diets reduces <i>in vitro</i> gas production
63	011	M.E. Cerón-Cucchi	Botanical composition and nutritional chemistry of the diet of llamas from Andean Altiplan grazing native grassland
66	012	J. Van Mullem	<i>In vitro</i> evaluation of the methane reducing potential of extruded linseed in relation to roughage composition of dairy cattle diets
122	013	F. Casalás	Structural characteristics of natural grasslands communities define the defoliation pattern by cattle
132	014	M.B. Henson	Use of plant growth-promoting rhizobacteria in forage systems
146	015	T.C. Baldissera	Can pasture pre-grazing heights targets be similar under full sun and shaded conditions? animal response
164	016	V. Diaz Avila	Performance of tropical fruit tree in ruminal kinetic and blood profile of lambs in Colombia
166	017	S. Acuña Ballesteros	Effect of shade and water on competition for food resources
15	018	A. Asher	"The dark side of the light": the effect of led illumination on feed efficiency, production and welfare of livestock
48	019	J. Villalba	Herbivory and the power on nourishing for health
173	020	Y. Zhang	The status of grass-based animal husbandry and the innovative grazing maximizing ecosystem multifunctionality at the improved natural grasslands

*ID refers to the submission ID provided by the Oxford Abstract Platform.

Session 2 – Optimal Nourishing of Herbivores

The following oral presentations are scheduled for the **afternoon of June 5, 2023**.

ID*	CODE	PRESENTING	TITLE
112	021	A. Vanhatalo	The effects of grain legume and rapeseed meal supplementation on amino acid metabolism of dairy cows fed grass silage-based diets
4	022	C. Gomez	Study of the potential use of bamboo forage in cattle feed
80	023	H.S. Xin	Effects of bacillus based probiotic on growth performance, blood parameters, gut health and bacterial communities of neonatal Holstein calves
83	024	C. Villot	Effect of heterofermentative and homofermentative bacteria inoculant in difficult to ensile grass silage after 15 days of fermentation
88	025	R.A.M. Vieira	Particle sizes in feces of lactating ewes fed on diets made of fine, medium, and coarse hay
119	026	S. Giger-Reverdin	Is feed efficiency estimated by different metrics a trait characterizing variability between dairy goats?
129	027	L. Gonzalez	Supplementation of forage-based diets using molasses lick blocks to reduce greenhouse gas emissions and improve production of growing cattle
141	028	S. Acuña Ballesteros	Supplementation in creole breed of cattle can increase protein intake and improve digestibility
149	029	C. Moreira	Effect of replacing TMR with mid-vegetative or early bud lucerne in rumen fermentation using the rumen simulation technique (rusitec)
150	030	S. Giger-Reverdin	Does the new INRAtion®v5 feeding system estimate with accuracy digestibility and n outputs in lactating goats fed various diets?
152	031	A. Cannas	Causes of milk fat depression of lactating dairy ewes fed fresh annual ryegrass herbage
23	032	A. Capelesso	Effect of feeding strategy and cow genotype on feed efficiency in pasture-based feeding systems
38	033	S. Lashkari	High fat level is required to protect and deliver the natural form of vitamin e in calves post-weaning
41	034	H. Gonda	Providing fresh pasture in the evening for fulltime grazing dairy cows increased energy corrected milk yield
86	035	M.S. Anam	Effect of dietary protein enrichment with selenium on blood metabolite and pregnancy rate of Brahman crossbred cows

*ID refers to the submission ID provided by the Oxford Abstract Platform.

Session 3 – Ecosystem Services and Nutrition: a. Provision; b. Regulating; c. Cultural and Supporting

The following oral presentations are scheduled for the **morning of June 6, 2023**.

ID*	CODE	PRESENTING	TITLE
52	039	P. Gregorini	A vade-mecum for grazing and health
104	040	P. Krawczel	The effects of grazing versus outdoor access on the productivity of Nordic red cows
171	041	I. De Barbieri	Breeding for improved feed efficiency and decreased methane emissions in sheep
127	042	J.B. Eggers	Enhancing nourishment of land and livestock in agricultural landscapes with edible woody vegetation
94	043	M. Taqiuddin	Socio-cultural ties and handling the nutritional needs of herbivores: feeding practices of cattle farmers in rural Lombok, Indonesia
11	044	J.P. Muir	Untangling the condensed tannin—herbivore black box
64	045	E. Wilson	Relationship between plasma and saliva urea nitrogen in New Zealand red deer calves (Cervus elaphus)
92	046	O.A. Castelán-Ortega	Effect of different supplementation levels of <i>Cymbopogon citratus</i> on methane emissions from growing beef cattle fed a high-forage diet
124	047	O.A. Castelán-Ortega	The effect of increasing supplementation levels of lemongrass on gross energy intake partitioning and methane production in growing beef cattle
136	048	C. Rivoir	Adaptation to grazing of primiparous Holstein dairy cows according to feeding strategy in the first 21 days postpartum
107	049	K. Creutzinger	Taste aversion as a motivation test to assess hunger in dairy calves
108	050	H.S. Xin	Antioxidant capacity of branched-chain fatty acids derived from lanolin <i>in vitro</i> and their safety in feeding animals
110	051	E. C. Udoekong	Growth performance of west African dwarf goats fed graded levels of African yambean in cassava peel based diets
7	052	C.T. Yang	Nutritional potential of bamboo leave and tea leave residue for feeding weaned Holstein calves
44	053	A. Mouhous	Effect of pasture-based feeding systems on milk production and composition of dairy goats in different mountainous areas of Kabylia

*ID refers to the submission ID provided by the Oxford Abstract Platform.

Session 4 – Applied nutrition and herbivory in the age of big data and technology

The following oral presentations are scheduled for the **morning of June 8, 2023**.

ID*	CODE	PRESENTING	TITLE
113	064	E. H. Cabezas-Garcia	The development of silage intake models for growing cattle
121	065	J. H. C. Costa	Can we estimate calf starter dry matter intake with feeding behavior patterns?
33	066	E.H. Cabezas-Garcia	Variation in predicted enteric methane emissions of lactating cows fed typical diets across the United States
84	067	C. Villot	A score including indicators of reticulo-rumen (RR) pH kinetics to characterize subacute ruminal acidosis (Sara) in dairy cows.
90	068	C.E.F. Clark	Capturing and understanding beef cattle production diversity across extensive environments to optimize the nutrition of herbivores
117	069	F. Godoy-Santos	Effects of microalgae supplementation in meat lipid composition and ruminal microbiome on finishing lambs
155	070	E. H. Cabezas-Garcia	Variation in predicted enteric methane emissions of dry cows fed typical diets across the United States
42	071	L. Betancor	Voluntary milking systems: an option to capture higher individual milk yields on pasture-based dairy farms
43	072	C. Battheu-Noirfalise	Decision support tools for grass-based fodder management on dairy farms: current adoption and perspectives
91	073	M. Imelhayene	Spacio-temporal dynamic study of livestock's and their feeding behaviors implication on environment in the Algerian Sahara
116	074	V. Berthelot	Diet-induced changes in rumen epimural microbiota structure and predicted metabolic pathways in dairy goats
8	075	R Balegi	Evaluation of a portable X-ray fluorescence device for a sustainable mineral nutrition in dairy herds
96	076	F. Zamuner	Potential benefits of preventive antibiotic therapy in cases of inefficient colostrum management in dairy goat kids
12	077	C. Zheng	Conversion of lignocellulosic biomass into valuable feed for ruminants using white rot fungi
27	078	H.W. Neave	Understanding the natural feeding behavior of goats to improve welfare and productivity in commercial systems

*ID refers to the submission ID provided by the Oxford Abstract Platform.

Session 5 – The role of the herbivore in future food systems

The following oral presentations are scheduled for the **afternoon of June 8, 2023**.

ID*	CODE	PRESENTING	TITLE
99	082	C. Battheu-Noirfalise	The direct (meat) and indirect (organic fertilizers) contribution of beef cattle farms to food security
101	083	R.C. Castelfranchi	Black-soldier-fly larvae: an eco-friendly solution for sheep, cow and laying hens manure management, besides insect protein and fertilizer production
103	084	S.J. Gibbs	Resource use efficiency and methane production of New Zealand beef finishing systems
154	085	S. Pérez-Márquez	Samanea tubulosa mitigates methane emissions in sheep.
50	086	X. Barriga	Productive indexes of the herbivore Cavia porcellus fed with <i>Hermetia illucens</i> larvae meal
79	087	J.E.M. Burgess	Body composition and carcase yield of purebred feedlot cattle of different biotypes
109	088	J.P. Thompson	Effect of grazing cattle on willow silvopastoral systems on animal performance and methane production
147	089	P.J. Ballerstedt	A ruminant revolution: the key to humanity's sustainable future
78	090	K. Barnes	The dietary effects of a brown seaweed and it's extract on dairy cow performance and methane emissions
115	091	M. Managos	Amino acid production and environmental impact from dairy cows fed best practice diets
56	092	H. Xin	Effects of two kinds of lactic acid bacteria additives on fermentation quality of whole-plant maize silage
172	093	D.A. Rojas-Meza	Potential of calabash tree (<i>Crescentia cujete</i>) as a local resource to enhance sustainable livestock farming in the dry Caribbean region

*ID refers to the submission ID provided by the Oxford Abstract Platform.

 $scientific.committee @symposium-isnh2023.com.br \ | \ contact @symposium-isn$

